Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Educación y gestión del conocimiento

Vol. 19 (2025): La IA y el futuro digital construyendo el camino hacia un mundo sostenible y competitivo 978-84-10470-93-4

Profesores, IA y Estudiantes: Una Relación de Influencias

Enviado
octubre 30, 2025
Publicado
2025-11-07

Resumen

En este estudio se analizan las percepciones de docentes universitarios de Administración de Empresas sobre el uso de la inteligencia artificial (IA) por parte de sus estudiantes, considerando si ellos mismos habían utilizado previamente esta tecnología. Para ello, se aplicó un cuestionario que midió expectativas de rendimiento, esfuerzo esperado, influencia social y riesgo percibido. La muestra estuvo compuesta por 398 profesores. Los resultados muestran diferencias significativas entre quienes han usado IA y quienes no: los primeros valoran más positivamente las expectativas de rendimiento de los estudiantes y la influencia social, además de percibir un menor riesgo asociado. En cambio, los docentes sin experiencia en IA tienden a evaluar más alto el riesgo y menos la influencia social y el rendimiento. Estas conclusiones son relevantes en un contexto educativo en el que la IA ya tiene una fuerte presencia, aportando información clave para orientar la enseñanza universitaria.

Citas

  1. Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
  2. Arias-Oliva, M., Pelegrín-Borondo, J., & Matías-Clavero, G. (2019). Variables influencing cryptocurrency use: a technology acceptance model in Spain. Frontiers in psychology, 10, 475.
  3. Arias-Oliva, M., Pelegrín-Borondo, J., Lara-Palma, A., Juaneda-Ayensa, E., 2020. Emerging cyborg products: an ethical market approach for market segmentation. J. Retailing Consum. Serv. 55, 1–9. https://doi.org/10.1016/j. jretconser.2020.102140.
  4. Celik, I. (2023). Towards Intelligent-TPACK: An empirical study on teachers’ professional knowledge to ethically integrate artificial intelligence (AI)-based tools into education. Computers in Human Behavior, 138, 107468.
  5. Christino, J. M. M., Silva, M. T. B., Cardozo, E. S., de Pádua Carrieri, A., & de Paiva Nunes, V. (2019). "Perceived risk and intention to use internet banking: The effect of self-confidence and risk acceptance." Revista de Administração Mackenzie, 20(1).
  6. Cooper, G. (2023). Examining science education in ChatGPT: An exploratory study of generative artificial intelligence. Journal of Science Education and Technology, 32(3), 444-452.
  7. De Cremer, D., & De Schutter, L. (2021). How to use algorithmic decision-making to promote inclusiveness in organizations. AI and Ethics, 1(4), 563–567. https://doi. org/10.1007/s43681-021-00073-0
  8. Faqih, K. M. S. (2016). An empirical analysis of factors predicting the behavioral intention to adopt Internet shopping technology among non-shoppers in a developing country context: Does gender matter? Journal of Retailing and Consumer Services, 30, 140-164.
  9. Farah, M. F., Hasni, M. J., & Abbas, A. K. (2018). Mobile-banking adoption: Empirical evidence from the banking sector in Pakistan. International Journal of Bank Marketing, 36(7), 1386-1413.
  10. Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474.
  11. Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley.
  12. Kanungo, R. N., & Jain, H. C. (2004). Relationship between risk and return on common stocks in Indian stock market. Vikalpa, 29(1), 9-16.
  13. Khan, S., Hameed, W. U., & Khan, M. I. (2017). Understanding the adoption of internet banking: An extended technology acceptance model. Journal of Finance & Economics Research, 2(1), 45-58.
  14. Kishore, K., & Sequeira, A. H. (2016). An empirical investigation on mobile banking service adoption in rural Karnataka. SAGE Open, 6(1), 1-22.
  15. Nasrallah, R. (2014). Learning outcomes role in higher education teaching. Education, Business and Society, 7(4), 257–276. https://doi.org/10.1108/EBS-03-2014-0016.
  16. Padhi, B. K., & Almohaithef, M. A. (2020). Determinants of COVID-19 vaccine acceptance in Saudi Arabia: a web-based national survey. Journal of Multidisciplinary Healthcare, 13, 1657-1663.
  17. Pascual, C. O., Borondo, J. P., & Lara, E. M. R. (2017). Model of acceptance of a new type of beverage: application to natural sparkling red wine. Spanish Journal of Agricultural Research, 15(1), 2.
  18. Planas Bou, C (2023). Universitarios y adolescentes se pasan en masa a ChatGPT para hacer trabajos (y exámenes). El Periódico (9-05-2023).
  19. https://www.elperiodico.com/es/sociedad/20230508/chatgpt-universidad-escuelas-inteligencia-artificial-estudiantes-deberes-examenes-86837251
  20. Raza, S.A., Umer, A., Shah, N., 2017. New determinants of ease of use and perceived usefulness for mobile banking adoption. Int. J. Electron. Cust. Relatsh. Manag. 11 (1), 44–65. https://doi.org/10.1504/IJECRM.2017.086751.
  21. Ronteltap, A., Van Trijp, J. C., Renes, R. J., & Frewer, L. J. (2007). Consumer acceptance of technology-based food innovations: Lessons for the future of nutrigenomics. Appetite, 49(1), 1-17.
  22. Shim, S., Eastlick, M. A., Lotz, S. L., & Warrington, P. (2001). An online prepurchase intentions model: The role of intention to search. Journal of Retailing, 77(3), 397-416.
  23. Silander, C., & Stigmar, M. (2019). Individual growth or institutional development? Ideological perspectives on motives behind Swedish higher education teacher training. Higher Education: The International Journal of Higher Education Research, 77, 265–281. https://doi.org/10.1007/s10734-018-0272-z.
  24. Stefan, A. D. P., & Sharon, K. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 1, 3–13. https://doi.org/10.1186/s41039-017-0062-8.
  25. Subero-Navarro, Á., Pelegrín-Borondo, J., Reinares-Lara, E., & Olarte-Pascual, C. (2022). Proposal for modeling social robot acceptance by retail customers: CAN model+ technophobia. Journal of Retailing and Consumer Services, 64, 102813.
  26. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46, 186–204.
  27. https://doi.org/10.1287/mnsc.46.2.186.11926.
  28. Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly: Management Information Systems, 27(3), 425–478. https://doi.org/10.2307/30036540
  29. Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly: Management Information Systems, 36(1), 157–178. https://doi.org/10.2307/41410412
  30. Wilkinson, J., Pidgeon, N., Lee, J., Pattison, H., & Lambert, N. (2005). Public risk perceptions of food hazards: A qualitative study. Health, Risk & Society, 7(3), 203-219.