Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio


Vol. 15 (2021): Reinventándose para la competitividad PostCovid19 ISBN 978-607-96203-0-10

Beyond the Covid 19: Acceleration of digital agriculture and global berries competitiveness

  • Alejandra Rosales Soto
  • Ricardo Arechavala Vargas
  • Bernardo Jaen Jimenez
marzo 14, 2022


La producción de berries posee una gran relevancia global en el desarrollo de la industria
agroalimentaria. Las diversas variedades de berries se utilizan para el consumo directo o como
materia prima en la industria alimentaria. La demanda de frutas en el mercado mundial ha aumentado
considerablemente, especialmente durante la crisis sanitaria mundial de Covid-19. La literatura
sugiere que la innovación agrícola a través de la agricultura digital resulta ser más urgente que nunca.
Si bien todos los sectores económicos tienen esta exigencia, la agricultura y los sistemas
agroalimentarios la necesitan más. En esta investigación se emplea un enfoque de métodos mixtos
para entender los retos que enfrenta la agroindustria y el valor agregado de la agricultura digital en la
producción de berries, que es el quinto producto agrícola en México. 


  1. Akhter, R., & Shabir, A. S. (2021). Precision agriculture using IoT data analytics and machine
  2. learning. Journal of King Saud University - Computer and Information Sciences.
  4. Aquino, A., Barrio, I., Diago, M. P., Millan, B., & Tardaguila, J. (2018). vitisBerry: An Android-
  5. smartphone application to early evaluate the number of grapevine berries by means of image
  6. analysis. Computers and Electronics in Agriculture, 148(October 2017), 19–28.
  8. Bohdaniuk, O., Buriak, R., & Savchuk, V. (2019). Competitiveness of horticultural products as a
  9. precondition of industry development. Entrepreneurship and Sustainability Issues, 6(4), 1587–
  11. Bojkovska, K., Joshevska, F., Tosheva, E., & Momirceski, J. (2021). Global Raspberries Market
  12. Trends and Their Impact on the Macedonian Raspberries Market. 8(February), 362–369.
  13. Chetan Dwarkani, M., Ganesh Ram, R., Jagannathan, S., & Priyatharshini, R. (2015). Smart farming
  14. system using sensors for agricultural task automation. Proceedings - 2015 IEEE International
  15. Conference on Technological Innovations in ICT for Agriculture and Rural Development, TIAR
  16. , Tiar, 49–53.
  17. Cook, R. L. (2011). Fundamental forces affecting the U.S. Fresh berry and lettuce/leafy green
  18. subsectors. Agricultural & Applied Economics Association, 26(4), 5.
  19. Eastfruit. (2021). Blueberry exports from Peru in 2020: Record-low price and record-high volume.
  20. East Fruit.
  21. price-and-record-high-volume/
  22. EastFruit. (2021a). Blueberries cheaper than raspberries and more bad news for blueberry growers
  23. from Ukraine. East Fruit Magazine.
  24. raspberries-this-season-and-more-bad-news-for-blueberry-producers-in-ukraine/
  25. EastFruit. (2021b). Fresh raspberries – the fastest growing export segment of Polish horticulture.
  26. East Fruit Magazine.
  27. export-segment-of-polish-horticulture/
  28. Elijah, O., Rahman, T. A., Orikumhi, I., Leow, C. Y., & Hindia, M. N. (2018). An Overview of
  29. Internet of Things (IoT) and Data Analytics in Agriculture: Benefits and Challenges. IEEE
  30. Internet of Things Journal, 5(5), 3758–3773.
  31. FAO. (2020). Food systems and COVID-19 in Latin America and the Caribbean: The opportunity for
  32. digital transformation.
  33. FAO. (2021). Digitalization offers agriculture a faster pathway to recovery from COVID-19 crisis.
  34. Food and Agriculture Organization of the United Nations.
  36. Food and Agriculture Organization of the United Nations. (2021). FAOSTAT Crops data visualization. FAO.
  37. Foreign Agricultural Service. (2021a). Foreign Agricultural Service Spotlight : Peru' s Fruit Sector
  38. Races to New Heights. In United States Department of Agriculture International (Issue June).
  39. Foreign Agricultural Service. (2021b). Raspberry Market Brief Country:
  41. ry Update_Lima_Peru_06-19-2020
  42. FreshFruitPortal. (2020). Mexico: Blackberry production plummets 29 percent in Michoacán amid
  43. pandemic. Fresh Fruit Portal.
  44. production-plummets/
  45. FruitLogistica. (2021). European Statistics Handbook. Fruit Logistica, 23.
  46. Gilpin, L. (2014). How Big Data Is Going to Help Feed Nine Billion People by 2050. Tech Republic.
  48. /
  49. González-Ramírez, M. G., Santoyo-Cortés, V. H., Arana-Coronado, J. J., & Muñoz-Rodríguez, M.
  50. (2020). The insertion of Mexico into the global value chain of berries. World Development
  51. Perspectives, 20(July), 100240.
  52. GSMA. (2021). COVID-19: Accelerating the Use of Digital Agriculture The GSMA AgriTech
  53. Programme.
  54. Hernandez, M. (2021). EU y Canadá, abiertos a negocios con pequeños productores poblanos. El
  55. Economista.
  56. con-pequenos-productores-poblanos--20210708-0100.html
  57. Kentsch, S., Cabezas, M., Tomhave, L., Groß, J., Burkhard, B., Larry, M., Caceres, L., Waki, K., &
  58. Diez, Y. (2021). Computer Vision , Computational Topology and Deep Learning. Sensors, 1–
  59. Keogh, M., & Henry, M. (2016). The Implications of Digital Agriculture and Big Data for Australian
  60. Agriculture: Vol. April (Issue April). Australian Farm Institute.
  61. Kljajic, N. (2017). Production and export of raspberry from the Republic of Serbia. Ekonomika, 63(2),
  62. –53.
  63. La Torre-Ramirez, C. A. (2021). Exploring the factors affecting just sustainability transitions in the
  64. agri- food sector in developing countries The case of Peruvian blueberries(Issue June). Uppsala
  65. Universitet.
  66. Lassoued, R., Macall, D. M., Smyth, S. J., Phillips, P. W. B., & Hesseln, H. (2021). Expert insights
  67. on the impacts of, and potential for, agricultural big data. Sustainability (Switzerland), 13(5), 1–
  69. Li, S., Luo, H., Hu, M., Zhang, M., Feng, J., Liu, Y., Dong, Q., & Liu, B. (2019). Optical non-
  70. destructive techniques for small berry fruits: A review. Artificial Intelligence in Agriculture, 2,
  71. –98.
  72. Lin, B. xi, & Zhang, Y. Y. (2020). Impact of the COVID-19 pandemic on agricultural exports. Journal
  73. of Integrative Agriculture, 19(12), 2937–2945.
  74. Mammadova, L. (2019). Azerbaijan to grow British berry varities. MENAFN.
  76. Manyika, J., Chui Brown, M., B. J., B., Dobbs, R., Roxburgh, C., & Hung Byers, A. (2011). Big data:
  77. The next frontier for innovation, competition and productivity. McKinsey Global Institute, June,
  79. Miller, N. J., Griffin, T. W., Ciampitti, I. A., & Sharda, A. (2019). Farm adoption of embodied
  80. knowledge and information intensive precision agriculture technology bundles. Precision
  81. Agriculture, 20(2), 348–361.
  82. Misra, N. N., Dixit, Y., Al-Mallahi, A., Bhullar, M. S., Upadhyay, R., & Martynenko, A. (2020). IoT,
  83. big data and artificial intelligence in agriculture and food industry. IEEE Internet of Things
  84. Journal, 4662(c), 1–1.
  85. Morales, R. (2021). México es competitivo en exportaciones de frambuesa sin subsidios: USITC. El
  86. Economista.
  87. exportaciones-de-frambuesa-sin-subsidios-USITC-20210721-0021.html
  88. Muller, M. L., & Campos, H. (2021). Open innovation and value creation in crop genetics. In The
  89. Innovation Revolution in Agriculture (pp. 70–93).
  90. Ozdogan, B., Gacar, A., & Huseyin, A. (2017). Digital agriculture practices in the context of
  91. agriculture 4.0. Journal of Economics Finance and Accounting, 4(2), 184–191.
  93. Patrick, A., & Li, C. (2017). High throughput phenotyping of blueberry bush morphological traits
  94. using unmanned aerial systems. Remote Sensing, 9(12).
  95. Regan, Á. (2019). 'Smart farming' in Ireland: A risk perception study with key governance actors.
  96. NJAS - Wageningen Journal of Life Sciences, 90–91(January), 100292.
  98. Rimantas, V. P. (2020). Berries. In Kaunas University of Technology, Kaunas Lituania. Elsevier Inc.
  100. Rosales-Soto, A., & Arechavala-Vargas, R. (2020). Agricultura inteligente en México : Analítica de
  101. datos como herramienta de competitividad. Vinculategia, 1415–1427.
  102. Rotz, S., Duncan, E., Small, M., Botschner, J., Dara, R., Mosby, I., Reed, M., & Fraser, E. D. G.
  103. (2019). The Politics of Digital Agricultural Technologies: A Preliminary Review. Sociologia
  104. Ruralis, 59(2), 203–229.
  105. Shi, X., An, X., Zhao, Q., Liu, H., Xia, L., Sun, X., & Guo, Y. (2019). State-of-the-art internet of
  106. things in protected agriculture. Sensors (Switzerland), 19(8).
  107. Sijmonsma, A. (2021). Growth is the word that describes Mexican horticulture best. Fresh Plaza.
  109. horticulture-best/
  110. Sonka, S. T. (2021). Digital Technologies, Big Data, and Agricultural Innovation. In The innovation
  111. revolution in Agriculture (p. 234).
  112. Tang, S., Zhu, Q., Zhou, X., Liu, S., & Wu, M. (2002). A conception of digital agriculture.
  113. International Geoscience and Remote Sensing Symposium (IGARSS), 5(C), 3026–3028.
  115. United States Agency, I. D. (2020). PRIVATE SECTOR ACTIVITY ( PSA ) Quarterly Progress Report
  116. (Issue USAID from the american people).
  117. Van Es, H., & Woodard, J. (2017). Innovation in agriculture and food systems in the digital age. The
  118. Global Innovation Index, Table 1, 97–104.
  119. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big Data in Smart Farming – A review.
  120. Agricultural Systems, 153, 69–80.
  121. Wu, F., Guan, Z., Arana Coronado, J. J., & Garcia-Nazariega, M. (2018). An Overview of Strawberry
  122. Production in Mexico. In University of Florida (Vol. 2018, Issue 1).
  124. Zhang, Y., Wang, G., Chang, L., Dong, J., Zhong, C., & Wang, L. (2014). Current status of strawberry
  125. production and research in China. Acta Horticulturae, 1049, 67–72.
  126. Zheng, C., Abd‐elrahman, A., & Whitaker, V. (2021). Remote sensing and machine learning in crop
  127. phenotyping and management, with an emphasis on applications in strawberry farming. Remote
  128. Sensing, 13(3), 1–29.